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Matrix structure detectionMatrix structure detection
Observations:

• Certain parallel preconditioners imply physical
domain partitioning (Block Jacobi, but not
multicolour ILU)

• ’Natural’ domain partitioning often
acknowledges partitioning of the physics.

⇒ Let partioning for parallel processing
acknowledge the same structure.
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Re-engineering of level sets:

• first point connects to first point of next set

• last point connects to last point of next set

• first point does not connect to last point of
another set
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State of the workState of the work
Parallel implementation in Petsc
can be made more efficient by adding new Petsc
primitives

Small number of tests done
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comparison with Chaco &c.
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A
2
x kernelA2x kernel

(work for TSI scidac)

• Matrix is direct product of block diagonal and
tridiagonal

• ADI preconditioner ⇒ solve many small dense
systems

• Solution of small (30–3k) dense systems by
iterative method.
well-conditioned, so low number of iterations.
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Iterative solutionIterative solution
• Formulate as left-preconditioned method

A = (D − E) ≡ D(I − N), M−1 = (I + N)D−1

⇒ M−1A = (I − N2)

• depends on efficiency of y = N2x

can we beat twice-gemv?
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Efficiency of A
2
x kernelEfficiency of A2x kernel

Why we can beat twice-gemv:

• Reuse of matrix

• Possible elimination of intermediate result

• Atlas gemv is optimised for out-of-cache; we
possibly operate in-cache
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case

Recursive approach to out-of-cache
case
Let

A =

(

A11 A12

A21 A22

)

then

y1 = A11(A11x1 + A12x2) + A12(A21x1 + A22x2)

y2 = A21(A11x1 + A12x2) + A22(A21x1 + A22x2)



Recursive approach continuedRecursive approach continued
Introduce t = Ax and localise application of A11,
A22:

t1

t2

}

=

{

A12x2

A21x1

y1 = A11t̂1, t̂1 = A11x1 + t1

y2 = A22t̂2, t̂2 = A22x2 + t2

y1

y2

}

+ =

{

A12t̂2

A21t̂1
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New kernel for recursive A
2
xNew kernel for recursive A2x

Instructions involving reuse:

y1 = A11t̂1, t̂1 = A11x1 + t1

y2 = A22t̂2, t̂2 = A22x2 + t2

Double matrix vector product
[y,s]=m2v(A,t,x):

s = Ax + t, y = As
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ExampleExample
On ev6:

32 68 92 128

blas 356 415 395 389

unroll4 439 450 432 322

64 96

unroll4 386 399
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Multigrid smoothersMultigrid smoothers
• Scalar optimisation (Atlas techniques); with

Jun Ding.

• Mathematical optimisation

construct CG iterates from GS iterates

does this pay?

other spectrum-adaptive method?



SummarySummary
• Optimisation of dense and sparse kernels

• Optimisation: uni-processor and distributed

• Optimisation through Intelligent adaptation


